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NONLINEAR  PROGRAMMING AND OPTIMAL CONTROL 

Pravin  Pratap V a r a i y a  

ABSTRACT 

Considerable  effort  has  been  devoted  in  recent years to 

three  c lasses  of optimization  problems.  These  areas are non- 

linear  programming,  optimal  control,  and  solution of large-scale 

systems  via  decomposition. We have  proposed a model  problem 

which i s  a generalization of the  usual  nonlinear  programming  pro- 

blem,  and  which  subsumes  these  three  classes. We derive  nec- 

essary  conditions  for  the  solution of our  problem.  These  condi- 

tions,  under  varying  interpretations  and  assumptions,  yield  the 

Kuhn-Tucker  theorem  and  the  maximum  principle.  Furthermore, 

they  enable  us  to  devise  decomposition  techniques for a class  of 

large  convex  programming  problems. 

More  important  than  this  unification,  in  our  opinion,  is 

the  fact  that we have  been  able  to  develop a point of view  which 

is  useful  for  most  optimization  problems.  Specifically, we  show 

that  there  exist  sets which we call  local  cones  and  local  polars 

(Chapter I), which p l a y  a determining  role  in  maximization  theories 

which  consider  only  first  variations,  and  that  these  theories  give 

varying  sets of assumptions  under  which  these  sets,  or  relations 

between  them,  can  be  obtained  explicitly. 
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INTRODUCTION 

HISTORICAL BACKGROUND 

Many problems  in  engineering  and  industrial  planning  can be reduced 

to  the  maximization of functions  under  constraints.  These  problems  can 

be  mathematically  formulated  as  follows: 

where x = (x1 , . . . , x ) is an  n-dimensional  variable, g = n (8, > - - - g  n ) 

is an  m-dimensional  function of x and g(x)L 0, x >  0 (which  means 

gi (x)  - > 0, x .  > 0 for  each i )  represents the  constraint  on  x. f is a rea l -  
1- 

valued  function of x and is the  performance  index or profit  function. 

Methods  for  solving  such  problems  in  nonlinear  programming  almost 

invariably depend  on some  use of Lagrange  multipliers.  These  methods 

are  extensions of the  classical  theory of Lagrange  multipliers, and use 

only  the  first  variations of the  functions  involved.  The  first  satisfactory 

theoretical  solution of (1) was  presented in the  paper by Kuhn and  Tucker [l].  

They  show  that  under  certain  qualifications  on  the  function g (which  insure 

the  adequacy of the first variations ), the  solution of (1 ) is related  to  the 

determination of a saddle-point of the  Lagrangian  function: 



Some  papers [21 have  since  appeared  which  deal  with  the  situation  where 

the  variable x in (11 ranges  over  more  general   spaces.  An essential 

weakening of the  constraint  qualification of Kuhn and  Tucker, and a 

clarification of i ts   role  was  given by  Arrow  et a1 [3]. Cases  where x 

is subjected  to  more  general  constraints  than  in (1) have  been  investigated 

by  Arrow  et a1 [4]. 

It  should  be  noted  that  the  situation  discussed  above i s  a static  sit- 

uation.  Time  does  not  enter  into  the  formulation of these  problems. In 

contrast  to  this,  control  engineers  are  frequently  faced  with  problems 

which are  essentially  dynamic  in  nature.  These  problems  may be ab- 

stracted  into  the  following  general  form. We a re  given a system which 

can be represented  as a difference  equation 

x(n+l) - x(n) = fn  (x(n),  u(n) 1 , n >  0 ( 3 )  

or  as a differential  equation 

- dx  (t) = f(x(t),  u(t),  t) , 2 0 (4) 
dt 

where  x(n) and x(t)   represent the  state-vector of the  system  at  time n 

(in  the  discrete  case ( 3 )  ) and at  time t (in  the  continuous  case (4) ), r e -  

spectively.  u(n) and u(t)  represent  the  control  vectors. We a r e  given 

certain  constraints  on  the  state and on the  control and we are   required 

to  find a control  sequence  (u(n),  n20) or a control  function (d t ) ,   t lO) ,  

such  that  the  constraints  are  met and some  scalar-valued  performance 

index is maximized.  The  main  theoretical  solution  to  the  continuous- 

time  problem (4) is the  maximum  principle" of Pontryagin  et a1 [5]. In 

his  dissertation,  Jordan [6 ]  gives a maximum  principle  for  the  discrete 

case (3 ) .  His approach is essentially a translation of the  methods of 

Pontryagin.  The  situation  envisaged  in ( 3 )  and (4) can  be  further  com- 

plicated if we introduce  randomness  into the picture so that x  and  u a r e  

I f  
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now random  variables [7]. It  should  be  remarked  that  these  methods  also 

limit  themselves  to  first  variations. In the  formulation of the  "maximum 

principles,  an  important  part is played  by a vector 'y which is the  solu- 

tion of the  adjoint  equations of ( 3 )  and (4). It is intuitively clear that  this 

y/ vector is the  ubiquitous  Lagrange  multiplier,  and if so, w e  should  be 

able  to  derive  these  results  from  suitable  generalizations of the Kuhn- 

Tucker  theorems,  for  example. So far, however, no such  contributions 

have  appeared  in  the  literature. 

I 1  

The  practical  applicability of nonlinear  programming  to  engineer- 

ing and industrial  problems  has  been  limited  to a certain  extent by  the 

size or dimensionality" of the  problem. In an  attempt  to  meet  this  con- 

tingency, a considerable  amount of effort has been  directed  to  obtain a 

sor t  of "decomposition  theory. ' I  The  basic  idea is the  following. Many 

large  problems  can  be  decomposed'l  into a number of autonomous  smaller 

problems which a re  coupled either  through  constraints or through  the  pro- 

fit  function o r  both. I s  it  possible  to  reformulate  this  problem  in  such a 

way  that  the  modified  problem  can be decomposed  and  solved by i ts   parts 

a s  it  were, so a s  to  yield a solution  to  the  original  problem?  In  the l in -  

ear   case  (i.  e.,   where f and g of (1) are   l inear) ,  one may  use  the  Dantzig- 

Wolfe  decomposition  technique [8]. A dual  approach  to a more  general 

c lass  of problems  has  been  presented by  Rosen [9]. Lasdon [ lo ] ,  in   his  

dissertation,  has  suggested a decomposition  technique  which  can  be  ap- 

plied  to a different  class of problems. 

1 1  
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PURPOSE O F  THIS PAPER 

While  the three  c lasses  of problems  referred  to  above--namely, 

constrained  maximization,  deterministic  and  stochastic  optimal  control 

and  decomposition  techniques--appear  to  be  more or less unrelated, we 

hope  to  show  that  they are different  versions of the  same  constrained 

maximization  problems.  Our  model is a slight  generalization  of  the 

Kuhn-Tucker  model (1). Namely, we wish  to 

Maximize f ( x )  I g ( x )  E A , x E ~ l )  ( 5 )  

where A' is an  arbitrary  set  and A i s  any  convex set .  We shall show 

that (5)  is related  to a saddle-value  problem. We also hope  to show that 

the  solution  to ( 5 )  r e s t s  upon a very  elementary  and well-known geometric 

fact  that  under  certain  conditions two disjoint  convex  sets  can  be  separated 

by a closed  hyperplane. In order  to  account  for  certain  applications, we 

have found it  useful  to  allow  the  variable x in (5)  to  be a n  element of a 

Banach  space,  rather  than  the  more  usual, but slightly  less  general, 

Euclidean  space. We feel  that  the  proofs  are not appreciably  complicated 

o r  prolonged  by  this  generality. 

Far more  important,  in  our  point of view, is the  fact  that  for  all 

these  maximization  problems  there  exist  pairs of "dual"  cones  which we 

call  local  cones  and  local  polars, which in a sense  convey  all  the  informa- 

tion  about  first-order  variations.  The  various  maximization  theories 

(viz. , Kuhn-Tucker  theorem,  the  Maximum  Principle)  then,  give  various 

conditions  under  which  these  sets  and  the  relationships  that  they  satisfy, 

may  be  determined. We thus  hope  to  show  that  through  the  introduction 

of the notions of a local  cone  and a local  polar we have  presented a common 
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framework with  which we can  deal with maximization  problems. In in -  

dividual  cases,  furthermore,  these  sets  may  have a more  intuitive  struc- 

ture.  Thus,  for  example,  in  Chapter V, we  show that  the  so-called 

cone of attainability''  (see  Reference 5 )  is an  approximation of the 1 1  

local  cone. 

The  structure of this  paper  is  as  follows: In Chapter 0, we ac-  

cumulate  (without  proof)  some of the  well-known results of  the  theory of 

linear  topological  spaces.  Details and proofs of these  statements  can be 

found  in  Dunford  and Schwartz [ l l ] .  In Chapter  I, we introduce  some 

terminology and discover  sets  (the  local  cone and the  local  polar) and r e -  

lations  between  them which are  essential  to a maximization  theory which 

limits  itself  to  the  first  variation only. Theorem 1. 1 demonstrates  the 

relevance of these  sets. In Chapter 11, we hope  to  make  transparent  the 

necessity of some  sort of constraint  qualification.  Chapter I11 gives  an 

extension of the  Kuhn-Tucker  theorem. We tackle  problem (5 )  and the 

related  saddle-value  problem  in  Chapter IV. A maximum  principle  for 

both  the deterministic  discrete  case  (under  more  general  conditions  than 

in [SI), a s  well a s  the  stochastic  case,  is  obtained in Chapter V. A sec-  

tion of Chapter V i s  devoted  to an extrema1  problem in differential  equa- 

tions.  This  section  is  heavily  dependent on the  papers by Gamkrelidze 1131 

and Neustadt [14]. The  connection  between  the  problem  that we consider 

and  a c lass  of continuous-time  optimal  control  problems  with  state  tra- 

jectory  constraints is shown  in  Neustadt [14]. 

Finally,  the  relation of (5 )  with classes  of decomposition  techniques 

is   presented in  two papers [ 15, 161 which wi l l  soon be  available. We 

therefore  omit  this  material  here. 
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CHAPTER 0 

PRELIMINARIES 

In  this  chapter, we collect  (without  proof)  some of the  well-known 

facts in the  theory of linear  topological  spaces.  Throughout  our  discus- 

sion,  the  field  associated with a linear  space  will be the  field of realnum- 

bers .  For a detailed  explanation  and  for  the  proofs of these  statements, 

the  reader  may refer to Dunford  and  Schwartz [ l l ] .  We shall  assume 

also  that  all  the  topologies which we encounter are Hausdorff. 

1. Separation  theorem  in  linear  topological  spaces. 

(a)   Let  X be a linear  topological  space  and K1 and K2 be disjoint 

convex sets  in X with K1 open.  Then  there  exists a non-zero  continuous 

linear  functional f which separates  them, i. e . ,   there   exis ts  a number CY 

such  that 

f ( X l ) ?  CY2 f (x,) 'dx,  E K1 v x ,  E K2 

(Remark:  The  existence of f is equivalent  to  the  existence of  a proper 

closed  hyperplane {x I f(x) = C Y ]  which separates K1 and K2. 

(b) Strong  separation  theorem.  Let X be a locally convex linear 

topological  space  and K1 and Kg be  disjoint  closed  convex  sets  in X with 

K1 compact.  Then  there  exists a continuous  linear  functional f ,  real  
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numbers ct and C, c > o such  that 

f (X,,> - Q > CY - c - > f (X,) V X ,  E K1 , \Jx, E K2 

2. Def. A Banach  space is a normed  linear  space  which is complete  in 

the  metric  induced by the  norm. 

( a )  A Banach  space  (with  the  topology  induced by the norm) is a 

locally  convex  linear  topological  space. 

Def. If X i s  a Banach  space,  the  space of linear  continuous  functionals 

on X i s  a Banach  space and will be denoted by X:* = [X.) 
( b )  The  Hahn-Banach  theorem.  Let X be a €3-space  and X1 a sub- 

space of X (i. e . ,  a closed  linear  manifold of X). Let X T  E X;:. Then 
I I 

and 

(c  ) The Open Mapping theorem.  Let X and Y be B-spaces and f 

a linear  continuous  function  from X -0 Y. Then f i s  open,  i. e . ,  if U 

is an open set  in X, f ( U )  is   an open set  in Y. 

( d )  Derivatives i n  Banach  space.  Let X and Y be B-spaces and 

f a map f rom X into Y. We say  that f is  differentiable  at a  point 

x E X iff, 

3 a linear  continuous  function f '  (x) from X to Y such  that 

f '  (x) wil l  be called  the  derivative  (the  Frechet-derivative) of f at  x. 

f '  (x) is unique i f  it  exists and the  usual  differential  calculus  applies [12]. 

( e )  Weak topologies  in  Banach  Spaces.  Let X be a Banach  space 

and X:* its  dual.  The  usual  topology  on X is the  one  induced by the norm. 

7 



It is also  called  the  norm-, o r  uniform-,  topology.  However, we can 

also  induce  another  topology  on X which is weaker  than  the  norm-topology. 

Def.  The  weak  topology  on X is the  weakest  topology on X which  keeps 

all the  elements x:: E X::' continuous. 

Alternately, a net [x,) in X converges  weakly  to  an  element x E X 

(i. e. ,   in  the weak  topology of X)  iff 

x:*((x ) + + ( x )  wx::: E x::: 
CY 

Now let  x be  a  fixed  element  in X. We can  consider x a s  a function 'Z 

on X::: a s  follows: 
h x (x:::) z x::: (x) 

Thus  the  map x + x  is an  imbedding of X onto X c X::::::. Dually we have, 
h 

- 
Def.  The weak':' topology of X::: is the  weakest  topology on X::: which  keeps 

all  the  elements 2 of continuous. 

Alternately, a net {x:) in X::: converges weak:::ly to  an  element x::: E X:: 

(i.   e.,   in  the weak': topology of X:::) i f f  

x::: ( x )   j x : :  (x) v x  E x 
CY 

( f )  The weak  topology  on X and the weak::: topology  on X::: a r e  

locally  convex  topologies. 

Def. A B-space X is reflexive i f f  X = X:::::. 
- 

Def. If X i s  a B-space and x:: E X::: 

<x::, x> I x::: (x) 

If X and Y are  B-space and  g : X 4  Y is a linear  map, 

< g ,   x >   g ( x )  



CHAPTER I 

Here we introduce  some  terminology and define  sets which we call 

local  cones (LC)  and local  polars  (LP)  that are essential  to a maximiza- 

tion  theory  that  only  takes  into  account first variations. We shall  obtain 

some  relations  between  these  sets  using  elementary  manipulations. One 

of  the  more  important  results wi l l  be an  analog of the  Bipolar  theorem i n  

the  theory of dual  spaces,  and  which a s  a special  case  yields  Farkas' 

Lemma.  The  relevance of the  local  cones and local  polar is given by 

Theorem 1. 1 which gives  necessary  conditions for the  maximization of 

a function when the  variable  ranges  over a subset of the  entire  space. 

Let X be a locally  convex  (real)  linear  topological  space and X:: 

its  dual (X* is given  the  uniform  topology). 

Def. 1. l:g Let A be a non-empty  set in  X (X9$). Let x E A (z* E A) .  

By the  closed  cone 2l generated by A a t  & (x*), we mean  the  intersection 

of all  closed  cones  containing  the  set A - 5  {a-5 I a E A (A-x* 

{ a-&* I a E A] 1. We denote  this  set by C(A, x) (C(A, x:<) - 1. 

Remark 1.1: If A is convex,  C(A, 5) (C(A, 5:k )  is convex. 

1 -  

Def. 1.2:  Let A be a non-empty  set  in X (X:k). Let x E A (x* - EA).  

By the  polar of A at x (z*), we mean  the set 

Def. 1.1,  1.2, 1. 3, 1.4 are not necessarily  standard  in  the 
l i terature.  
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P(A, x) = { X * ~ X *  E X*, <x*, x> f x* (X)  5 OYx E C (A, x)/ 
(P(A, x:#) ={x } x E X, (x, x*> 'r X* (X) 5 0 W X *  E C (A, x*)] ) - 

If A is a cone,  P(A) H A ,  0 )  

Remark 1 . 2 :  (a) P(A, x )  is a closed  convex  cone  in X*. 

(b)  P(A, x-*) is a closed  convex  cone  in X. 

- 

Def. 1. 3: Let A be a non-empty set in X and x - E A .  L e t F ( 2 )  be the 

neighborhood  system at 2 (i. e . ,  the c lass  of all neighborhoods of - x). 

By the  local  closed  cone  generated by A at  - x, we mean  the  set 

Remark 1. 3: (a) If A is convex,  LC(A, x )  - = C(A, x) 
(b) W e  are not interested  in  local  cones in  X::. 

Def. 1 .4 :  .Let A be a non-empty  set  in X and - x E A. Bv the  local  polar 

of A at  x we mean  the  set 

LP(A, x) = [x*\ x* E X:$, <x+, x> < - 0 x E LC(A, 5) 

Remark  1.4: (a) LP(A, - x)  is a closed, convex  cone  in X::. 

(b) See Fig.  1. 1 for  an  illustration of the  objects  defined 

above. 

Def. 1. 5: Let A be a cone.  Then  Co(A) is the  intersection of all the 

closed  convex  cones  containing A. 

Fact 1.1 (Analog of the  Bipolar  Theorem).  Let A be a cone  in X. 

Then  (P(P(A) ) = Co(A).  In  particular i f  A is closed and  convex, 

P (P(A) )  = A. 

Proof: (a) P (P(A) )  2 Co(A). 

By Remark 1 . 2  (b) it is sufficient  to show that  P(P(A) ) 3 - A. 

Let x E A be  fixed and  x* E P(A). 

Then (x::, x >  < - 0 d x:: E P(A). .- . X E P(P(A) ). 



(b)  P(P(A)  ) 5 C O W .  

Suppose - x E P(P(A)  ) and ~f. dCo(A). 

Then by the  strong  separation  theorem, 3 x* E X*, x* # 0, 

CY real and E > 0, such  that 

( X * , & )  2 CY > Q - E  - > <x*,x> V X E  Co(A) 

Since Co(A) i s  a cone, 0 E Co(A) 

:. CY - E 2 <x*, 0) = 0 

. .  = > 0. 

Again  since (Co(A) is a cone, .- . Ax E Co(A) v X - > 0, v x  E Co(A). 

.'. a >  (x*,x) d x  E Co(A) 

3 0 - > <x*,x> V x E Co(A) 

.' . <x*, x) 2 cr > 0 - > <'x*, x) v x E Co(A) 

. '  . x* E P(Co(A) ) by  definition. 

Moreover A g Co(A)"r  P(A) 3 P(Co(A)) .  

. - .  x* E P(A)  and since  (x*,x) > 0, x c j  P (P(A)  ). 
Q. E. D. 

Corollary  1.1  (Farkas 'Lemma).  Let al ,  . . . , a b be  vectors  in a n' 
finite  -dimensional  Euclidean space. If, 

x)  - < 0 vi+ <b,x) 5 0, then 
n 

i=l  
3 X1, . . . , An - > 0 such  that b = C Xiai 

Fact 1 . 2  Let A be a cone  in X. Then 

P(A)  = P(Co(A))  

Proof: (a) A &  Co(A)  P(A) 2 P(Co(A) ). 

(b)  Let x* E P(A)  .' . <x9;, x)  < - 0 d x  E A. 

Let  {x1, . .., c_ A and Xl, . . . , X be  positive. 

Then <'x*, xi} <, 0 vi- <x*, C hixi) 0. 

n 
n 

i= 1 
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By continuity we  get, 

<x::, x> < - 0 d x E Co(A) 

.'. x::: E P(Co(A) ). 

Corollary 1 . 2  LP(A, - x) = P(Co(LC(A,  x) ) ). 
Q. E. D. 

Proof: LP(A, - x )  = P(LC(A, x ) )  by Def. 1 . 2  and  Def. 1 .4 .  - 
= P(Co(LC(A, 5)  1 )  by Fact  1 . 2 .  

Q. E.  D. 

Fact 1. 3 Let A1 and A2 be closed  convex  cones  in X. Then 

P(A1 n A2) = HA1 ) + P(A2 1 

Proof: (a)  P(A1 A A2) 3 P(A1) + P(A2) 

Let x1 :: E P(A1 1, x2:t E P(A2) and x E A l n  A2 

.', (x1::, x) - < 0 and < x2::, x >  < 0 so that - 

P(A1O  Az) 2 P(A1) + P(A2). 

Since P(Aln   A2)  is closed, the assertion  follows. 

(b)  P(Aln  A2) C_ P(A1 + P(A2). 

Let x:: - E P(A1 f l  A2) and - x+  P(A1 ) + P(A2). 

By the strong  separation  theorem, 3 x E X, CY rea l  and € > 0 

.'. x E P(P(A1))  A P(P(A2))  = A l n  A2 by Fact 1.1 

But x::: - E P(A1 0 A2) so that  (x*, x > < - 0. 
Q. E. D. 

12 



I 
Corollary 1. 3 Let A1 and A2 

P(A1n A2) = HA1 ) + H A 2 )  

i f f  Co(A1 0A2) = Co(A1 )nCo(A2 ) 

Proof: (a) ( 2 ) ~ + ( 1 ) .  

By Fact 1. 3 ,  

be  cones  in X. Then 

By Fact 1. 1, 

By Fact 1. 3 ,  

P(Co(A1  )nCo(A2))=  P(Co(A1) ) + P(Co(A2)) = P(A1) + P(A2) by Fact 1 .2 .  

Co(A1 )nCo(A2) by Fact 1 .1  (4) 

F r o m  (11, ( 3 ) ,  and (4) we obtain  (2). 
Q. E. D. 

Corollary 1.4 Let A1 and  A2 be  non-empty  sets  in X and 5 E AlflA2. 

Then,  LP(AlflA2, x-) = LP(A1, x) + LP(A2, x-) 

i f f  Co(LC(A1fl A2, 5) ) = Co(LC(A1, 5) fl Co(LC(A2, 5) ) 

Remark 1.4 ( a )  The  previous  corollary wil l  be useful in obtaining results 

both  in  "decomposition  techniques" as wel l  as in  "optimal  control.  Sup- 

pose we have a variable x which is constrained  to lie in two sets AI  and 

11 
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A2, i. e . ,  x E Aln A2. Now, a s  will be demonstrated  in  Theorem 1.1, 

the  important  set  for  maximization is the set  LP(A A A x). If x were 
1 2’ 

constrained  to  be  in Ai only,  the  relevant  set would be  LP(Ai,  x), i = 1, 2. 

Under  what  conditions  canwe  obtain  the  set  LP(AlfiA2, x) from the de- 

composed  pieces  LP(A  x), i = l, 2?  This  corollary  gives a partial i’ 

answer  to  this.  It  may be  noted  that  LP(A1n  A2,  x) is not always  equal 

to  LP(A1,  x) + LP(A2,  x). A simple  counter-example  is  the  following: 

Let X = E = ,!(x1, x2 ) j  

Let A1 be  the x1 axis, i. e . ,  A1 = ((x1, 0)  I x1 arbitrary, ’2 

2 

and A2 = ((x1,  x2) I x2 + (x, + 1)2 < - 1) 

Let x = ( 0 ,   0 )  

Then  LP(A1RA2, x) = E 2 

but  LP(A1,x) + LP(A2,x) = x2  axis. 

(b)  It is also  interesting and important  to  determine  conditions  under 

which  LP(A1, x)  + LP(A2,  x) = LP(A1,  x) + LP(A2,  x).  Stated  differently, 

let A1 and  A  be closed  convex  cones. When i s  A1 +A2  = A1 + A2? 2 

Unfortunately we have  been  unable  to  find a satisfactory  solution to this 

problem. 

Local  Maxima 

Let X be  a real  B-space and f a real-valued  differentiable  function 

on X. Let A be  a  non-empty set  in X. 

Def. 1. 6 f has a local  maximum  at x in A iff 

(i) - x E A 

(ii) 3 a neighborhood N of - x such  that 



f(x) = sup {f(x) I x E No A] 

Theorem 1.1 f has  a  local  maximum at x in A- 

f '  (&) E LP(A, x) 
Proof:  Let N be a neighborhood of x such that 

f(x) = sup Cfw / x E NAA] 

Let M be a  sufficiently  large  positive  integer  such  that 

So - - [x I )I  x-x I 5 A] C, N and define 

s n = { x I l I x - x g l  2) n = O , l ,  ... 
M+n 

Then, N 3 So 3 S 1  . . . and E Sn =&I .  
n=O 

Now, for  each  xn E AnSn we have 

Q. E. D. 

Corollary 1.1 Let A be  convex and f a  concave  function. 
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Then f has  a maximum  at ~f. in  A (i. e. f(x)> f(x) Vx E A )  

c=j f '  (X) E LP(AJ 5) 
' I  4' Proof : follows  from  Theorem 3.1. 

Now since f is concave, 

j x  

Fig. 1.1 Def 1.1 to 1.4 
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CHAPTER I1 

CONSTRAINT QUALIFICATION 

In  this  chapter, we study  the  notion of constraint  qualification. Two 

definitions are presented. One is that of Kuhn and Tucker [l]. The  second 

is a weaker  requirement, first suggested  by  Arrow et a1 [3].  We shall 

demonstrate  the  sufficiency of these  requirements  in  terms of the sets 

introduced  in  Chapter  I.  Since we shall be dealing  with  derivatives of 

functions, we shall  restrict  ourselves  to  Banach  spaces,  because  there is 

no adequate  theory of differentiation  in  more  general  spaces.  For a defi- 

nition of the  Frgchet  derivative,  the  reader  may  refer  to  Chapter 0. 

(For  details,  see [12]).  It  should  be clear  that  the  discussion of Chapter I 

is valid  for  B-spaces. 

Let X and Y be real  B-spaces;  g:X+Y a differentiable  map. 

Let Ay be a non-empty  subset of Y, and AX = {x I g(x) E Ay)' g-l{Ay). 

(Note:  The  definitions  given  below  closely  parallel  Arrow  et a1 [3]. ) 

Def. 2. 1 We say  that a vector x E X is an  attainable  direction at if 

i f  there  exists  an a r c  !x ( e )  1 0 L 8 5 1) c such  that 

I 

(1) x(0) = II. 

(2) x(0) is differentiable  from  the  right at 8 = 0 
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and - d x  = X I  (0) = Ax. 

Let AD(&) = (Ax I Ax is an  attainable  direction at 5 

Clearly  AD(x) is a cone. 

Let  A(x) - = Co(AD(x) ) = closed,  convex  cone  generated by AD(x). - 
Def. 2 . 2  We say  that a vector A x  E X is a locally  constrained  direction 

at  x if (g'  (x), Ax) = g' (x) (Ax) E LC(+, g(&) ). 
Let  L(x) = f A x  I A x  is a locally  constrained  direction  at - 

Clearly  L(x) is a closed  cone. 

Fact 2 . 1  AD(x) C_ LC(Ax, x) hence 

e I e=o 

- - 
x)  

Proof:  Let A x E AD(5) 

.*. Ax = X I  (0) where {x(e) 1 0 <,e <, 11 c pLx and x(0) = 5 

.*. A x  ~C(pLx.fiN, x) since  it  is closed. 

As N w a s  an  arbitrary neighborhood of x we have 

A X  (XXflN, x) = LC(AX, x) by Def. 1 . 3  

NEflE) 
Q. E. D. 



00 ... 3 a sequence 
iX')k=1 C_ 

Sn and a sequence 

of positive  numbers so that, 

By a diagonal  argument, 3 sequences 
n= 1 n= 1 

so that, 

Let N be an  arbi t rary neighborhood of g(x)  in Y. Let  n(N) 

be sufficiently  large  so  that  g(xz E AynN  for all n L  n(N). 

... (g(xn ) - g(x) ) E [ Ay4N - g(z)] C C(+/lN,  g(5)) \dn> n(N) 

k 

nk 
- 
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Since 0 always  belongs  to  C(AynN, g(x) we have  for  any  neighborhood 

Q. E. D. 

Combining Facts  2 . 1  and 2.2 we obtain 

Lemma 2 . 1  (a) AD(&) h LC(Ax, x) c L(x) 
(b) A(&) c Co(LC(AX, x)) c Co(L(x)) 

Def. 2. 3 We say  that  (g, Ax, AY)  satisfies  the  Kuhn-Tucker  constraint 

qualification  (KT) if 

AD(x) 3 L(g) 5 E Ax. 

Remark 2 . 1  KT* W since AD(&) A(x). 

Corollary 2.  1 (a) If (g, Ax, %) satisfies KT,  then 

LC(AX. x) = L(x) - = f A x I (g'(x), A x )  E LC(%, g(x) J 
(b) If (g ,  A x ,  AY) satisfies W, and if  + 

is a  convex set  in Y then 

Co(LC(AX, x) ) = L(x) = f l lx  I {g'(x), A x >  E LC(Ay, g(x) )] 

Proof: (a) follows  from  Lemma 2 . 1  (a) and  Def. 2. 3. 
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(b)  follows  from  Lemma 2 . 1  (b), Def. 2.4 and the  fact  that Ay convex 

implies A - g(x)  convex so that Y 
LC(+,  g(x) ) = Co(LC(Ay,  g(x) ) ) Q. E. D. 

Remark 2 .2  It  was  demonstrated  in  the  last  chapter  that  the sets important 

for  our  discussion  are LC(AX, 5) and L P ( 5 ,  5). Now usually  the  set 

A is given  indirectly a s  Ax = g-' {Ay 1 and  cannot  be  explicitly  deter- 

mined.  However,  the  set Ay is given  and  LC(Ay, g(x))  can  be  easily 

X 

computed.  The  constraint  qualifications,  presented  above,  enable us  to 

determine  the unknown sets  LC(+, x-) from  the  sets LC(+,  g(x) - ). In 

fact ,   as   is  shown  in  the  next  result,  the  set  LP(AX, x) has  an even 

simpler  form if  a constraint  qualification is satisfied. 

Theorem  2.1  Let Ay be  a  convex  set  in Y and assume  that 

(g, Ax, Ay) satisfies W. Let & E A x ,  then 
L P ( 5 ,  x) = LP(+, g(5) ) o g'(x)  where 

LP(Ay, g(x) ) o g'(x) - = [y::: o g'(&) I y* E LP(Ay, g(z) )] 
Proof:  (a)  LP(AX, x) LP(Ay, g ( 5 ) )  o g ' ( 5 )  = B say. 

by Corollary 2 . 1  (b) 
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By hypothesis, Ay is convex, so that  LC(AyJ  g(x) is a closed  convex 

cone,  not  containing &. Once  again  using  the  strong  separation  theorem, 

3 y::: E y::: , P real and 6 > 0 so that 

But < y::: o g'(x),  Ax > = < y:::, &) > 0 which contradicts (1 

(b)  LP(AX, x-) 3 LP(Ay,  g(x)) o g'(x) 

But  by (1) and Cor.  2.l(b)  (g'(x), " A x )  = A 2  E LC(Ay, g(x) ). 

Corollary 2 . 2  If in  the  hypothesis of the  above theorem, Ay is a convex 

Proof: Since Ay is a convex  cone  and g(x) - E A Y' 

22 



:. P(Ay) 3, LP(Ay,  g(5) ). The  rest  follows by Theorem 2 . 1  

Q. E. D. 

Corollary 2 .  3 In  the  hypothesis of Theorem 2. 1 let Ay = ( 0 ) .  

Then . LC(%, x) = !Ax I < g'(&), Ax>'= 0) and 

LP(Ax, x) = Y:::o g'(x1. - 

Remark 2 . 2  It is necessary  to  determine  conditions  under which 

Y:::o g'(x) - = Y:::o g'(x). - If this  were  true,  then  in  Corollary 2. 3, any 

element x::: E LP(AX, 5) could  be expressed as x:k = y:ko g'(&)  where 

y : :  E y::: . A partial  answer  to  this is given  in  the  following  assertions. 

Fact 2 .  3 Let X and Y be real   B-spaces and f:X+Y  be a linear 

continuous  function.  Define f : Y++ X::: by (y:::) E y::: o f .  

Then 

( a )  f has  closed range*? has  closed  range i. e . ,  Y:ko f = Y:ko f .  

(b)  7 has  closed  range and X is reflexive "5. f has  closed  range. 

Proof: (a)   Let  N C - X be the null subspace of f, i. e . ,  N = {x f(x) = 0) 

Let XI::: _CX::C be the  subspace of all elements x:: E X::: such  that 

- 

x E N I  x:::(x) = 0. Then by Corollary 2.  3 (taking g = f )  we have, 

Let Y1 C Y  be  the  range of f .  Then  by  hypothesis Y1 is a (closed) 

subspace of Y. We give Y1 its relative  (induced) topology  and regard 

it as a B-space, so that f: X+ Y is a linear  continuous onto  map. By 1 

the  Open  Mapping  Theorem f is an  open  map of X onto Y1. 
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Let 

Define a function Fl on Y1 as follows: 

h 

yl (y l )  = xl':(x) where x E X such  that  f(x) = yl. 

(i) y1 is well-defined. ..' f (x l )  = f ( x 2 ) W f ( x l  - x2) = 0 - t  
cc 

x18(x - x ) = 0 since x :: E x1:::-x 
1 2  1 1 2 

q X 1 )  = X1:::(x ). 

(ii) y1 is linear 

(iii) 7 is continuous.  Let y 

'CI 

00 

1 { y1 and  yn 4 0.  

Since f is an  open  map,  it  can be easily  shown  that ]m < m 

and c X with / / x i  11 m  IIyn 11 and f(xn) = yn. 03 

bnInEl  - 

. a .  1 yl (yn) [  = I x'::(xn) I 5 /Ix+j~ 1lxn 11 5 m 1Ix~::ll  llyn 11 + o as n j m  

.* .  y1 is continuous  at 0 and so y1 E Y12:. 
'CI  'CI 

(iv) By the  Hahn-Banach  Theorem 3~::: E Y:: which  extends y1 so that 
cc 

xl:: = y::o f . 
' * x1 

::: E y:: f . 

. * .  (iv) -X1 ::: = y::: 0 f = y :: 0 f . 
1 

(b)  Let X1::: = y:: 0 f = y:: 0 f . cc 
Then f : Y:::-jX12k is onto. 

Let y E f 0  

Define a function x1 on X1:: as follows: 
- 

cy x (x :k) = y:::(y) where x :k = f(y::) 'c 

1 1  1 
y::: E y::. 

By the  same  argument as before, we see  that x1 is a linear  continuous 

function on Xl:::, i. e . ,  x1 E (Xl::)::. 

Now X is reflexive  and X1 is a subspace of X. .'. X1 is reflexive. 

... 1 x1 E X1 such  that x1 (xl*) = <x1-, 

cy 

cy 

cc 
rb x 1) . 
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* yqy) = x (x :k) = xl(f(y:::)) =<f (ya), xl) =<y*, f (Xl ) )  dy* E yg: 
" cc 

1 1  

:. y = f ( X l ) .  :. y E f(X). 
Q. E. D. 
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CHAPTER I11 

ANEXTENSIONOFTHEKUHN-TUCKERTHEOREM 

This  chapter  may  be  considered  to  be a straightforward  application 

of the results  derived  in  Chapters I and 11. Theorem 3.1 is a slight  ex- 

tension of the  Kuhn-Tucker  Theorem.  The  proof of this  theorem  demon- 

strates  the need  for  some  sort of constraint  qualification. 

Let X, Y be  real  B-spaces; g a differentiable  map  from X+Y, 

f a real-v.alued  differentiable  function on X. Let Ay be  a  convex set  

in Y and We shall  assume  that 

(g ,  Ax, +) satisfies  the  weak  constraint  qualification (W). 

Theorem 3.1 (Extended  Kuhn-Tucker  Theorem) 

( a )  With the  above  hypothesis, i f  f has  a local  maximum  at 1~ in 

then, 

% C J  

f'(x) E LP(+,  g(x) ) 0 g'(x) 

(b) In addition  to  the  above  hypothesis,  suppose  that AX i s  convex  and 

f concave.  Then f has  a maximum  at x in iff  

Proof:   (a) By Theorem 1.1, f has  a local  maximum  at x in Ax 
.+ f'(x) E LP(Ax, x). 

By Theorem 2.1, since  (g, Ax, Ay)  satisfies W 
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Then  it  should  be  clear  that 

LC(%> g(&) ) = [ (y1J * J Ym) I Y k _ > O  

so that  LP(+,  g(5)) = [ ( A , ,  . , Am) I \<", k s i ;  \ 
= 0, k > i  J ( 2 )  

Furthermore,  LP(A  g(x) ) o g'(x) wil l  be closed.  Hence, i f  f has  a 
YJ - 

local  maximum  at x in  A we will  have X' 

We thus  have  the 

Kuhn-Tucker  Theorem:  Let X be a real  B-space and g = ( g l J .  . . , g k )  

be a differentiable  mapping  from X+ Em. Let f be  a  real-valued, 

differentiable  function of  x. Then 
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(a) A necessary  condition  that x. solves  the  problem 

Maximize  {f(x) I gi(x),> 0 ; i = 1,. . . , m ]  is 

(i) g.(x) > 0 and there  exist  numbers A. < 0 1 <  i <  m 
1" 1 -  " 

such'  that 
m m 

i=l 
(ii) C A.g.(x) = 0 and (iii) f ' (x)  = C kg.' (x). 

i=l  1 1 -  - 1 1  - 

(b)  If the  functions f ,  g l ,  . . . , are also  concave  then,  the gm 

conditions  given  above are sufficient. 

Remark: We have  demonstrated why we need  some  sort of a constraint 

qualification. By Theorem 1. 1, we see  that  f '(x) - E LP(AX, - x).  However, 

in  order  to  relate LP(+, x) with  LP(Ay,  g(x) - ) and g'(x), we  need a 

constraint  qualification.  This  condition is sufficient  but  not  necessary 

for LP(+, 5)  = LP(+, g(x) ) o g'(x). 
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CHAPTER IV 

A GENERALIZATION OF THE KUHN-TUCKER THEOREM 
AND THE  RELATED SADDLE-VALUE PROBLEM 

W e  recall  the  problem  treated by Kuhn and Tucker [l].  

Maximize  [f(x) I g(x)> 0, x - > O f  (1) 

where x E X( = E"), g : X 4  Y( = Em) is a differentiable  map  and f is 

a real-valued,  differentiable  function of x.  Equivalently, 

Maximize  f(x) I g(x) E Ay, x E A 1 
where Ay is the  non-negative  orthant  in Y and A is the  non-negative 

orthant  in X. The  related  saddle  -value  problem is to  find x > 0, y > 0 

such  that 

" - 

@ ( x > x )  5 ($ (z>x.) 5 @ (5, y)  'b(x2 0, Vy? 0 

where @ (x, y) = f (x) + (y, g(x)) . We note  that x - > O H  x E A and 

y L  0-y E -P(Ay) .  

We shall  consider  the  following  generalization of this  problem, 

Maximize  {f(x) I g(x) E AyJ x E A} (2 )  

where Ay is any  convex  set  in Y and A is any set in X. This  problem, 

however,  does  not  have a natural  corresponding  saddle-value  problem. If, 

however, we res t r ic t  A to a closed  convex  cone,  there is a related 

saddle-value  problem.  Namely  find 5 E A, x:: E -P(Ay)  such  that 
Y 

$) ( x J ~ * )  5 9 x*) < - 9 (E> y*) V X  E A, Vy2' E -P(Ay) 

and  where  (x,  y*) = f(x) + <y*, g(x) ) .  

29 



. . . ". . . - -- 

In  the f i rs t   par t  of this  chapter, we shall  consider (2 )  with Ay as 

any  convex  set.  Then we shall  specify  the  case  where Ay is a  closed 

convex  cone and  put forward  the  corresponding  saddle-value  problem. 

A. Let  X and Y be real  B-spaces; g, a  differentiable  map  from  X 

to Y and f ,  a  real-valued,  differentiable  function of x. Let Ay be a 

convex  set  in  Y  and AX = {x I g(x) E Ay] . Assume  that  (g,%, +) 

satisfies W.  Let  A  be  an  arbitrary  set  in X. 

Consider  the  following  problem: 

Maximize  [f(x) I g(x) E +, x E A 1 
Theorem 4 . 1  (Generalized  Kuhn-Tucker  Theorem) 

( a )  Suppose 5 solves (2 ) .  Then 

f ' (x) - E LP(AnAx, 5) 

(b)  If in  addition  LP(An+, 5)  = LP(A, 5) + LP(Ax, - x)  

then 3 5* E -LP(Ay, f(x) ) o g'(5)  such  that 

f ' (x) " + x* E LP(A, 5) 

( c )  If in  addition  LP(Ay,  g(5) ) o g'(x) - is a  closed  set  in X*, 

then 3 x* E -LP(Ay,  g(5) ) such  that 

f ' (x) - + x* o g'(x) E LP(A, x) 
(d)  Conversely,  suppose 3 x E AAAX, 1 x* E -LP(+,  g(x) ) and 

suppose  A is convex and f(x) +(x:\, g(x)) is concave  on A, 

then if  

such  that 
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Proof:  (a) By hypothesis, x solves (21, so that  f(x)>f(x) 

t / x  E A/IAX. .*. Theorem 1.1 _j (3 ) .  

(b) By ( 3 )  and (4 )  we have, 

f'(5) E LP(Ax, 5) = LP(A, x,) + LP(Ax. 5) 

= LP(A, x) + LP(Ay,  g(x) 1 o g'<x,] by Theorem 2 . 1  

The  last  equality - 4 ( 5 ) .  

( c )  By (b) we have 

f'(z) E LP(Ay,  g(x) ) o g'(x) + LP(A, X) 

= LP(Ay, g(x) 1 o g'(x,) + LP(A, x,) by hypothesis of (c). 

.'. 3 ~ *  E -LP(Ay, g(x) ) such  that ( 6 )  holds. 

(dl By the  hypothesis of ( d )  - x E AnA,  and 31:: E -LP(Ay,  g(5) ) 

such  that 

f ' (x) - +x9; o g'(x) E LP(A, x). 
Moreover  f(x) + <r*, g(x)) is concave  on A so that by Corollary 1.1 

f ( X )  <x2:, g(X)) 1. f(x) g(X)) v X E A. 

Suppose  in  addition  that  x E Ax, i. e. ,   g(x) E +. Then  since + is 

convex,  (g(x) - g(x_) 1 E Ay - g(x) - _C LC(Ay, g(x_) ). 

Also x* E -LP(Ay,  g(x) ) so  that 

(x*, g(x) - g(&)) 2 O. v x  E Ax. 

.*. t / x  E AOA,  we have 

f(x) 5 f(x) + ( p ,  g(x)> f(x) + (x*, g ( g )  = f(g) 

since (x*, g(5)) = 0 by hypothesis. ... x, solves (2). 

(e)   This  is obvious  because 0 belongs  to  every  cone. 
Q. E. D .  

For purposes of application to optimal  control, we wish  to  strengthen 

part   (e) of Theorem 4 . 1  for  the  following  special  situation. 
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Then  under  assumptions A1 and A2, there is a A> - 0 and  a x+ E Y:::, 

not  both zero  such  that 

,,$ f'(x) + o g'(x) E LP(A,  x) - (2) 

Al.  Let D = LC(A, x). We wil l  assume  that D i s  convex. Further-  

more,  if D # { O j ,  t he re   i s  a subspace Z & X, such  that D has a non- 

empty  interior C relative  to Z .  Finally, if Z ( E  ) for E > O  is an  arc  in 

C,  such  that  lim Z ( E  ) = x and Z ( E  ) is differentiable  from  the  right  at 
E 3 0  

E = O  with ~ ' ( 0 )  E C, then  there  is a sequence E + 0 such  that Z ( E  n )  E A. n 

A2. Let G g'(x). We assume  that if G(D) = Y, then G(D) = Y .  Let 

N = (x  G(x) = 0 )  . Then we shall  assume  that if N + D = X, N + D = X. 

Also, if LP(N)/I   LP(D) = (0) we will  assume  that  LP(N) + LP(D) is 

closed. 

Remark  1: If X is  finite-dimensional,  then  assumptions A1 and A2 are  

trivially  satisfied when A is a finite  union of disjoint  closed  convex  sets. 

Before we proceed  to  the  proof of Theorem 4 .2 ,  we shall  obtain 

some  preliminary  results  which we shall  need  and  which  also  have  some 

independent  interest. 

Lemma  4.1.  Let X and Y be  B-spaces and G a continuous  linear 

map  from X to Y .  Let D  be  a closed,  convex  cone  in X such  that 

G(D) = Y. 

For f >  0, let Pf =(Ax1 11 A x  1 < e , Ax E D l .  Then  there is a rea l  

number m > 0 such  that 
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G(Pp ) 2 Smp 

where S is the  closed  sphere  in Y of center 0 and radius mp. 
mP 

Proof:  The  proof of this  lemma is a straightforward  modification of the 

proof of the  Open  Mapping Theorem [ 11 J and is, therefore,  omitted. 
Q. E. D. 

Lemma 4.2 .  Let D be a closed  convex  cone  in X, and g, a contin- 

uously  differentiable  function  from X to Y such  that g(0) = 0. 

Let G s g'(0) and  suppose  that ( 3  m > O )  (VF >O) (G(Pp) 3 S 1. 

Let  z E D, 11 z 11 = 1 and G ( z )  = 0. Then  there is a number > 0, 

- m f  

and  a  function O ( E  ) such  that  for all 0 < E < E o, the  set g( E Z  + P ) O ( E  ) 

is a  neighborhood of 0 in Y .  

Proof:  Let  v: X-+Y be the  function  defined  by  v(x) = g(x) - G(x). 

Then, ( 1  V ( E  z + x 1 )  - V ( E Z  + x2)  11 

Therefore, 

Fix 0 < E < and let y E Y with I y l l  < O ( E  ). 
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. . . . . . . . . 

Let E D such  that G(x,) = y and lIxo[) < 1 llyll < - 1 O ( E  ). 
m m 

Let x1 E D such  that G(xl - x,) = -V(E z + x,) and IIxl - x, JI < 1 
m 

We first show that for  n_> 0, 11 xnll < E so that the above  inequalities 

a r e  valid.  Firstly, 

By induction  on n, 

Also xn  converges.  Let  lim x = x.  Then 11 x]I < 4 O ( E  ) and x E D. n 
n+ 03 

- 
m 

Now, 
G(xo) = y 

G(xl) - G(x0) = -V(E z + X,) 

G(x2) - G(xl) = - V ( E Z  + X , )  + V(E z +X,) 

Adding  both sides we get, 
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But xn+x so that g ( E  z + x)  = y. Also x E D and I x 1 < 4 O ( E  ). 
m 
I 

:. g(E z + PO(€ ) )  2 sm 
T O ( €  1 
4 Q. E. D. 

Lemma 4. 3 Let D  and N be closed convex cones with  D + N = X. For  

p > 0, let S p  be the  closed  sphere  in X of center 0 and radius p 

Let Pp = DOSp  and Np = NnSp.  Then  there  is a number m > 0, such 

that 'p + N p  2 Smp 

Proof: X = D + N = (Pn + Nn). Now Pn is a closed,  convex, bounded 
n= 1 

set  and is,  therefore,  weakly  compact. Nn is closed and  convex  and,  hence, 

i s  weakly  closed.  Therefore, P + Nn is a weakly  closed,  convex  set,  and, 

hence,  it is strongly  closed.  The  result  follows by the  Baire  Category 

Theorem. 

n 

Q. E. D. 

Lemma 4 . 4  Let D be a closed,  convex  cone  in X such  that  there is a 

subspace Z CX with D C - Z and  such  that D has  a non-empty  interior C 

relative  to Z. Then, i f  N is any  subspace of X such  that N + D = X, 

we must  have 

D n N  = C()N U (01. 

Proof:  Trivially,  DnN 3 - CTN U 101. To  prove  the  converse,  let 

z E DAN  be  any  vector  such  that 1 z 11 = 1. Let x E X such  that z - x E C 

35 



z-x = z-n-d 

.'. 2"d-x = z-n 

Since  z-x E C and d E D = c, therefore for all X > 0 we must  have, 

z + X(d-x) = z-An E NnC.  Letting h approach 0 we have, z E NnC. 

Q. E. D. 

Lemma 4. 5. Let   g:X-+Y be a continuously  differentiable  function. 

Let Ax = [x  I g(x) = O}. Let x - E such  that G(X) = Y where 

G E g'(x). Then  (g, AX, 10 satisfies  the K. T.  condition at  x. - 

Proof:  Let z E X such  that G ( z )  = 0. By Lemma 2 ,  1 E > 0 such - 

that  for 0 < E < 

SO that = z. 

Q. E. D. 

We  now prove  that  under  the  assumptions A1 and A2, if - x solves 

(l),  then ( 2 )  is satisfied  with,&# 0 o r  x* f 0. 

Case 1. Suppose Q = g'(x) (D) # Y. Then Q is a proper  closed convex 

cone  in Y so that  there is a x* E - F, x* # 0 such  that 

<x*, q ) L O  V u  Q 

. * -  { x*, g'(x)  Ax) 2 0 VAx E D 

... { x* o g'(5) , Ax) 0 t/ Ax E D 

.*. x* o g'(x) - E LP(D) = LP(A, 5) 
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By assumption 2 therefore, N + D = X.  Hence  by Lemma 4, 

N n D = N n d  u{O] 
We shall now show that, 

LC(+ n A, 5) = LC(+, x)r )  LC(A, 5) = ~n D 

Trivially,  LC(A /)AXJ 5)  C, N 0 D = N O  C U {O] where C is defined a s  

in A l .  Let z E Nf) C, IIzll = 1. By Lemma 2, for O <  E < e o ,  

g(x - + E z +PO(E )) is a neighborhood of 0 in Y. Also,  since E z E C, 

we have E z + P C C .  Let  g(x + E  z + x  ) = 0 where E z + x E C 
O ( E )  - - E E 

< O ( E  ). Let X ( E  ) = x + E z + x E .  Then X ( E  )+& a s  E+O and, 

- d X ( E  ) = z .  Therefore by A l ,  there is a sequence E ~ O  such  that 
d e  

x ( e n )  E A. Also  g(x(En) ) = 0 means, X(E n)  E Ax. Therefore 

X ( E  n)  E Ax fl A. Since lim (X(E n )  - x) = z ,  we have z E LC(AX  OA). 
n-oo E n 
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Now by Theorem 1.1, 

f ' ( 5 )  E LPCA, R A, 5) 

= LP(LC(+n A, 5) ) 

= ' LP(N0D)  

= Y* 0 g'(x) + LP(A, x) 

= Y* 0 g'<x> + LP(A, x,) by A2 

- by Fact  1.3 - 

. .. 3 p E x* such  that, 

f ' (x)  - +x* o g ' ( x )  E L P U ,  X) 

Hence ( 2 )  is satisfied with A? # 0. 
Q. E. D. 

B. Let X, Y be real   B-spaces;  g, a differentiable  map  from X into 

Y; f ,  a real-valued  differentiable  function of x. Let Ay be a closed 

convex  cone in  Y and A an  arbitrary  subset  in X. We assume  that 

(g, A , A ) satisfies W.  Consider  the  following  three  problems: X Y  

Problem 1. Saddle-Value Problem 

Find - x E A and x* E - P(Ay) such  that 

Problem 2. 

Find x_ which solves 

Find x which (for  fixed x*) solves 

Maximize  (f(x) + (x*, g(x)) I x E A]. 
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(ii) g(x) E + and (iii) < x$<, g(5) ) = 0. 

b )  If, moreover,  A is convex and &x, x*) is concave  for  x E A, 

conditions (i), (ii), (iii) are sufficient  for (z, x*) to  solve  Problem 1. 

c )  If (x,  x*) solves  Problem 1 , then  x  solves  Problem 2. 

Proof: a) $ (X, x*) 5 P<x,  - x*) V x E A. 

.'. Theorem 1.1 (i) 

Since - H A y )  is  a  cone, 0 E - P(Ay) 

This  implies (iii) and -g(x) E P(-P(+) = P(P(-Ay) ) = -Ay by Fact 1.1 

. *. g(5) E Ay giving (ii). 

c )   g (x)  - E A ==+ x is a  feasible  solution to Problem 2. Y - 



Fact 4 . 2  a )  Suppose x solves  Problem 2. Then 

f ' (x )  - E LP(Afl  AX, x) 
b )  If, in  addition,  LP(A/I A x ,  x )  - = LP(A, 5)  + LP(AXJ - X )  (2) 

& f'(x) + x:: o g'(x) E LP(A,  x) - 
Proof: a )  By hypothesis x solves  Problem 2 

. .  * f(x) " >f (x )  v x  E AnA,. 

By Theorem 3 . 1  

f l (x)  - E LP(AnA,, x) giving (1). 

b )  By (2)  and (11, 
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Fact 4. 3: a)  Suppose 5 

f ' (x) - + x:::: 0 g'(5) 

b )  If, i n  addition, E - - g(x) E Ay 3 

< x:::, g(5) ) = 0 

solves  Problem 3(z::). Then 

E LP(A, 5).  ( 1 )  

P(Ay)  then (xJ x>:) solves  Problem 1 

(2) 

Proof: a)  Suppose x, solves  Problem 3(x::). i.e., 

f(x) +(x::, g(x)) 5 f(x) +(x::, g(5)) v x  E A. 

( 1  ) follows by Theorem 1. 1. 



b)  Suppose (x, y*) solves  Problem 1. Then 

$(x, x*) 5 x::) #x E A. 

... - x solves  Problem 3(~::). 

Conversely, if - x solves  Problem 3 ( ~ * ) ,  then 

x::) v x  E A. 

Ay so that 

Q. E. D. 
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CHAPTER V 

APPLICATIONS OF THE  GENERALIZED KUHN-TUCKER THEOREM 

Preliminaries:  W e  shall  need  some  notation  for  the  direct  product of 

B-spaces. 

Def. 5. 1 Let X1 and X2 be B-spaces with norms 11. I l l  
respectively.  Then  the  direct  product X1@X2 = [(xlJ  x2) Ixl E XIJ  x2 

and (I- il2 

E x21  

is a B-space  under the norm 

A. The  Case of Discrete  Optimal  Control 

Consider a system of difference  equations. 

x(k+l) = x(k) f fk (x (k 1, u(k)  ) k = 0, 1, . . . 
where 
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x E X is the  state  vector 

u E U is the  control  vector and 

fk : X @ U - + X  is a differentiable  map. 

X, U are  real   B-spaces  called the  state  space and control  space,   re- 

spectively. 

The  initial  state  x(0)  belongs  to a subset A(O) 5 X. The  target is a 

subset A(N)  C X. The  total  gain  incurred up to  time k > 0 is given by 

gk(x(0), . . . , x(k); u(O), . . . u(k-1) 1 where gk is a real-valued  differ- 

entiable  map  on  Xk+'@ U. 

Let SXk) - C U for  k = 0, 1 , .  . . be subsets. It is required to  find 

k 

(i) a sequence of controls g ( k )  E !J(k), k = 0, 1 , .  . . , N-1 

( i i )  an  initial  state ~ ( 0 )  EA(O) such  that  the  sequence 

( ~ ( o ) ,  . . . , - x(N) ) satisfies (1) with u(k)  = s ( k )  and x ( N )  E A(N) and 

such  that 

gN(s(0), . . . , - x(N); ~ ( 0 ) ~  . . . , - u(N-1) ) i s  maximized  over  all 

such  sequences. 

We can  restate  the  problem  in  the  following way 

Max 

Or  I 

x(k) + fk(x(k), u(k)  )-x(k+l) 

= 0 k = 0, 1, . . . N-1 

x(0) E A(O), x(N) EA(N)  and 

u(k) E n(k)  k=O, 1, . . . , N-1 

hk(x(k),  u(k),  x(k+l) ) = 0 

k = 0, 1,. . ., N-1 

x(0) E A(O), x(N) E A(N)  and 

u(k) E 52 (k)  k = 0, 1 , .  . . , N-1 

where  the  functions  hk  are  defined  in  the  obvious  way. 
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W e  now assume  that  the  functions h and  the  constraint sets 9 (k )  k 

and  A(0)  and  A(N) satisfy the assumptions of Theorem 4.2 .  Then by 

Theorem 4 . 2  we form  the  function 

are  satisfied.  

There  exist  functions k ( I ) ,  . . . , &(N)  in X:: and a/ - > 0 not all zero  such 

a @  - 0  O < k <  - N-1 " 

ax(k) 

where  the  partial  derivatives  are  evaluated  at 

/? =k; x(k) = - x(k);  u(k) = u(k);  ~ ( k )   = d k )  v k. 

Expanding  these  relations we get 
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Then  the  equations  (5)  can  be  expressed as 

- (u) E L P  (s2(0)@ n(1) Q . . . aH 
a u  @ O(N-1)  ; 2) 

where u = ( ~ ( 0 ) ~ .  . . , u(N-1)) E U N 

and 2 = ( ~ ( 0 ) ~ .  J - u(N-1)) 

Equation ( 3 )  can  be  written  in a more familiar form as 

Equations ( 2 )  and ( 4 )  give  us  the  so-called  ' 'transversality  conditions'' 

when A(0)  and  A(N) are replaced by prescribed sets (e. g. , singleton, 

manifold, etc. ). These  results  can  be  summarized  in  the  following  theorem. 

Theorem  5.1  Suppose  that { - ~ ( 0 1 , .  . . , g(N - 1) ] is the  optimal  control 

and f ~ ( 0 ) ~ .  . . , &(N)) the  optimal  trajectory.  Then  there  exist  functions 

[& (1 ), . . . , & (N)) 5 X:: and A not  both zero such  that 

The  transversality  conditions  are  given by 

Moreover, if H(u) is defined as in ( 6 )  we must  have 

H'(u) - ' E LP( R ( 0 )  @. . . G3 R(N-1); U) 

where u and - u a r e  defined  in (8). 

Remark  The  maximum  principle  for  discrete  optimal  control as  obtained 

by  Jordan [6 ]  is a special  case of Theorem 5.1. There  the x, u are finite 
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I 

dimensional  vectors and the  profit  function  depends only on  one  coordinate 

of the  final  state  x(N). If we substitute  these  additional  restrictions, we 

obtain  his  result. 

It should be pointed  out  that  whereas we obtain  Theorem 5 . 1  as   an  

application of Theorem 4.2, Jordan  uses a direct  argument (which is es -  

sentially  a  translation of the  argument  in Ref. 5) to  arrive  at   his  results.  

H i s  proof,  therefore,  has a very  great  intuitive  appeal,  unlike ours. 

Our  main  concern  for  generalizing  the  state  space  to  an  arbitrary 

B-space is to treat  the  case of stochastic  control  where  the x, u   are   ran-  

dom  variables.  The  case in  which  the  random  variables  can  take  more 

than a finite  number of values  cannot be treated by the  result  obtained by 

Jordan. With very  slight  modification,  however, we can  use  our  result 

for  this  problem.  The  next  section  deals with this  case and it will be 

illustrated by a  simple  example. 

B. The Case of Discrete  Stochastic  Optimal  Control 

Consider  a  system of stochastic  difference  equations 

x(k + 1) = x(k) + fk(x(k), u(k) ) k 0, 1,. . . , N-1 (1) 

where x ( k )  is an n-dimensional  random  variable  representing  the  state 

at  time k; u(k) is an  r-dimensional  random  variable  representing  the 

control  at  time k. The  sample  space of these  random  variables is the 

probability  triple (0, A, P) where R is the  sample  space, A is a spec- 

ified  o-algebra of subsets of R and P is the  probability  measure on A. 

We shall  assume  that  the  random  variables  x(k)  belong  to  some 

Banach  space X of random  variables  over (0, A, P). F o r  example, 

X. may  be  the  Hilbert  space of all  n-dimensional  random  variables which 

have  finite  second  moments.  Similarly, we shall  assume  that dk), for 
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each k,  belongs  to  some  B-space U of random  variables.  For  each k, 

the  function fk : X B U+ X is assumed  to  be  differentiable. We  are 

given  some  constraints  on  the  u(k)'s  and  on  the  initial  and  final states 

x(0)  and  x(N),  and we are  required  to  maximize  some  differentiable, 

real-valued  function of the  x(k)'s and u(k)'s. 

It is clear  that  under  this  formalism  this  problem is a special  case 

of part A. Therefore,  instead of repeating  the  same  arguments, we shall 

consider  a  simple  example and  work  it  out  in  some  detail. 

be  the  observation  at  time  k of the  state  x(k)  corrupted by the  noise 

w(k).  Let d o )  be  a  random  variable  representing  the  a  priori knowledge 

about  the  initial  state  x(0).  Let (0, A, P) be  the  sample  space of all these 

random  variables. We shall  make the  following  additional  assumptions: 

1) The  random  variables d o ) ,  d o ) ,  . . . , v(N-l), w(O), . . . w(N-1)  

a r e  independent  and  all of these  except  possibly ~ ( 0 )  have  zero  mean. 

2 )  All the  random  variables  that we shall  encounter  are  square 

integrable, i. e.,  they  belong  to  L2(n, A, P) = B say.  Note  that B:: = B. 

Let U(k), fo r  k = 0,. . . , N-1, be  the  space of all  functions 

u(y(o), . . . , y(k) ), of y(O), . . . , y(k),  such  that E U2 < 00- It is clear 

We are  required  to find  u(k) E U(k), i. e. u(k) = u(y(O), . . . , y(k) ) so as 
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N 

k = l  
to  minimize 1 / 2 E  C x(k)2. 

Formally we  wish  to 
N =(k) - x(k+l) +u(k)  +v(k)  = 0; 

Maximize {-1/2 C Ex(k)2 d o )  - x(0) = 0 k =  0, . J N-1 
k= 1 u(k) E U(k); k = 0,. . . , N-1 (3)  

W e  now apply  Theorem 4 . 1 .  W e  first form the Lagrangian  function 

N N-1 

k = l  k=O 
& - -  C E x(k)2 + E <@(k+l), =(k) - x(k+l)  + u(k) + v(k)> 

+ <@(O),  Q40) - x(0)) . 
w h e r e h  2 0 and @ (k) E B* = B and < g,  h)  E(gh). Let ~ ( 0 1 , .  . . , c- 
be  the  optimal  control  functions  and [z(O), . . . , s(N))  the  corresponding 

state sequence.  Then,  by  Theorem 4 . 1 ,  ] k ,  0, (0),  . . . , & (N)  - C B 
such that 

a P  
ax(k) 

= 0 k =  0, ..., N 

where  the  derivations are evaluated  at = & , @(k) = &  (k), 

49 



iff <& (k + 1 ), u(k) } 5 0 \d u(k) E U(k) 

iff < & (k + l), u(k)) = 0 u(k) E U(k) 

iff < @ ( k  + I), u(Y(O), . . J y(k) )) ' + 1) u(y(O), . . - , y(k) = 0 

for  all square  integrable  functions u of (y(O), . . . , y(k) 1. 

It is easy  to see that  this  requirement is satisfied iff 

E($(k + 1) 1 y(O), . . . , y(k ) )  = 0 k = 0 , .  . . , N-1  

Now equations (4 )  - ( 6 )  and ( 8 )  can be satisfied for,& > 0. 

.'. Taking/ = 1 we have 

a & ( l ) - & ( O )  = 0 

a& &+ 1) - 2 (k) = x(k) k = 1,.  . . , N - 1  

- 2 (N)  = x(N) 

and E ( & ( k  + 1) 1 y(0) ,..., y(k ) )  = 0 k = 0 ,..., N-1 

F rom (1 1) we get 

- & ( N )  = ax(N - 1) +u(N - 1) +v(N - 1) 

Using (12)  we have 

0 = aE(x(N-1) 1 y(O), . . . , y(n-1))  + E(u(N-1) 1 y(O), . . . , y(N-1)) 

+ E(v(N-1) I y(O), . . . , y(N-1)) 

.'. 0 = aE(x(N-1) 1 y(O), . . . , y(N-1))  +g(y(O), . . . , y(N-l))+ E v(N-1) 

so that 

- u(N-1) = u(y(O), . . . , y(N-l)= - aE(x(N-1) I y(O), . . . , y(N-1))  (13) 

F rom (10)  we get 

a& (k+l)  - & (k) = - x(k) = ax(k-1) - + g(k-1) + v(k-1) 

Taking  conditional  expectations  with  respect  to y(O), . . . , y(k-1) 

and  using  the fact that 

E (&(k)  I y(O), . . . , y(k-1))  = 0 by (12)  and 

E (& ( k + l )  1 y(O),.. . . , y(k-1)) = E ( E ($(k+l) I y(O), .. . , y(k ) )  

I y(O), . . . , y(k-1))  

= 0 we  have 
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C. A Maximization  Problem  in  Differential  Equations. 
i 

The  problem  considered  in  this  section and  the  methods  employed 

for its solution are based  to a very  large  extent  on  the  papers  by 

Gamkrelidze [ 131 and  Neustadt [ 141. 

Let 3 be a linear  space  whose  elements  f(x, t )  are n-dimensional 

vector-valued  functions  for x in R and t in I = [to,  tl]. We assume n 

that  the  functions f in 3 satisfy  the following  conditions. 1. Each f 

is measurable  in t over I for  every fixed  x,  and is of c lass  C with 

respect  to x in R 2. For  every f in 3 , and compact set X in  RnJ 

1 

n' 

there  exists a function  m(t),  integrable  over I and possibly  dependent  on 

f and X such  that 

1 f(x, t )  I 5 m(t), af (x, t )  I 5 m(t)  x in X, t in I. 
IK 

where  the  vertical  bars  denote  the  usual  Euclidean  norm i n  Rn. 

Let Pr denote  the set of all vectors CY =  CY^, . . . , cyr) where 

r 

i= 1 
ai? 0 and C cy. = 1. Let F 5 3 . Then  the  convex  hull [F] of F is 

1 

given by 

Def.  The set F - C '3 will  be  called  quasi-convex if  for  every  compact set 
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X in Rn, every  finite  collection f l ,  . . . . , f r  of elements  in F, every 

E > 0, there are functions fa E F, defined  for  every cy E Pr (and  de- 

pendent  on X, the fi  and € ), such  that  the  functions g(x, t; (Y) 

= C crifi(x, t )  - fCY (x, t)  satisfy  the  following  conditions: 
r 

i= l  

1. 1 g(x, t; (.,f s m (t), I (x,  t; (Y) 1s Fl ( t )  

'j x E X, t E I and IX E Pr 

where g ( t )  is some  function  integrable  over I and  possibly  dependent 

on X and the f i  (but not on E ); 

7 

2 .  I j2 g ( x , t ; Q ) d t  I <  E , T1 E 1, T~ E I, v x  E X 

3.  for  every  sequence [ai) with CY E Pr, which converges 

T. 1 

i 

to  some (Y E P , g(x, t; LY ) converges in  measure (as a function of t on I) 

to  g(x, t; (P), for  every x E X. 

r i 

Suppose we are given  such a quasi-convex  set F. Let f in  F, and 

let  x(t), t in I be any  absolutely  continuous  solution of the  differential 

equation 

&(t)  = f(x(t) ,   t)  t in I. 

We shall  regard  such  an x as an  element of the  Banach  space B of 

continuous  functions from the  compact  interval I into Rn. Now let  A be 

the  subset of B consisting of those  elements x in B which are  solutions 

of ( 1 )  for  some f in F. Let h be a real-valued  differentiable  function 

of x in B and le t  q : B-+ Rm be a differentiable  mapping. We wish  to 

solve  the  following  problem. 

Maximize  [h(x) [ q(x) = 0, x in A )  (2)  

Remark.  The  notion of quasi-convexity  was first introduced by Gamkre- 

lidze  in [13.] where  he  shows  that it "encompasses  almost all the  extrema1 
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problems  in  solving  the  minimization of integral  type  functionals  which 

a r i s e  i n  the  classical  calculas of variations and in  the  theory of optimal 

control . . . Thus,  for  instance,  suppose  that we a r e  .given a fixed  set 

!2 in  Er and let be  the  set of all measurable  functions on some  in- 

terval I which are  essentially bounded.  Then  the set  

1 1  

F = ,! f (xJ   t )  I f(x, t) = h(x ,   d t ) ,   t )  , u(* ) 6 5)- (a)  is  quasi-convex 

if h is of c lass  C1 with  respect  to x  and measurable  in  (u, t )  for   every 

fixed  x.  (See [13].  ) The  problem  considered by Gamkrelidze  can be 

phrased  as  follows. We a r e  given a quasi-convex  family F of functions 

defined on a  bounded  open  interval I. Let A denote as  before  the  set  of 

functions x ( 0  which satisfy  the  differential  equation 

& ( t )  = f ( x ( t ) >   t ) J  t E I 

for  some  element f in F. Then  the  problem is to  find  an  element x(*) 
in A, and  a pair  to,  tl  in I with to  5 tl  such  that  the  (2n + 2 )  - ple 

( X (to),  X (t1),   to,   t l)   is   an  extrema1 of the  set Q n N in E 2n+2 where 

Q = [ ( X  (To) ,  X (T1 ), To, TI) I X ( - )  E A; T o ,  T1 E I and To 1 T I  1 
and N in  some  differentiably  manifold of E 2n+2 which represents  the 

constraints  on  the  initial and final  values of the  trajectory. 

The  problem  that we consider is closely  related  to  the one discussed 

by Neustadt  in [14]. F i r s t  of all,  the  initial  and  terminal  moments  to and 

tl a r e  fixed. He then  supposes  that  the  quasi-convex  family F is given 

via a set  of admissible  controls  as  in (a) above.  The  function q in our 

eq ( 2 )  above  may  then  be  construed  to  represent a finite  number of con- 

straints on the  entire  trajectory  (rather  than  just on the  end-points as in 

[13]. The  results  presented by Neustadt  are  very  similar  to ours. Un- 

fortunately we do  not  have a proof of his  results so that we cannot  compare 

our method  with  his. 
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We now return  to  the  solution of the  problem  stated  in (2). 

for  some f E F.. We first  obtain  an  estimate  for  the  set LC(& x). 

Consider  the  linear  variationdl  equation of (2), 

A'x(t) = ax (x( t ) ,   t )   bx( t )  f Af(&(t).  t )  

- 

af - (3 )  

for t in I = [to,  tl], A f any arbitrary  element of [ F ]  - f and x(to) = 5 
any arbitrary  vector  in R Let  $(t)  be a non-singular  matrix  solution 

of the  homogeneous  matrix  differential  equation 
n' 

$ ( t )  = a x  af (&), t )  p (t) 

with $ ( to)  = I, the  identity  matrix.  Then, 

t 
4 x(t)  = 5 ( t )  [z i- It $-' (7) f(Z(7)J 7) d7] (4 )  

0 

Let K C  - B be  the  collection of all such  solutions d x(t)  of ( 3 )  f o r  some 

3 E Rn  and some 4 f E [F]-f .  - Clearly K is convex, 0 E K. Our f i r s t  

observation is the  following  Lemma. 

Lemma:  Since F is quasi-convex,  LC(A, 5) 2 K. 

P r o o f :  Let LI x(t)  E K, 3 E Rn, A f E [F]  - f such  that 4 x(to) = 

and 

A'x(t) = (x(t) ,   t)  A x(t)  + A f(x(t),  t E I 

Let E > 0. Since F is quasi-convex,  there  exists a function gc  (x, t )  in 

c lass  C1 with respect  to x,  and dependent on A f and E such  that 

- f + E  A f + g ,  E F  



for  to T~ < - T 5 t lJ   for  every  solution  xE (t) of (5) below  sufficiently 

near x<t)  and for a compact  set X in Rn which contains  the  trajectory 

x<t) in its interior.   Here x (t) is the  solution of 
E 

5 = f(xE > t) + E d f ( x E  S t )  + gE (xE J t) 
E 

and xE ( t d  = z(td + E 5 

It  can  be shown then  that 

where O(E)+O a s  E+O uniformly  for t in  I. 

Clearly x belongs  to A. Also xE ( t )  +x<t) as E-) 0 and 
E 

E 

Hence Ax E LC(& x). 
Q. E. D. 

Remark:  It  should  be  emphasized  that  the  function O ( E  ) i n  ( 6 )  is not  a 

continuous  function of E since  the  function  gE is not  chosen  continuously. 

W e  can now state  the  main  result of this  section.  Let Q denote 

the  derivative q'(5) of q at  the  optimal x. 
Theorem 5. 2: If x - is a solution of (2)J  then  there is a & ?  0 and a 

vector & E Rm not  both zero  such  that 

4 h ' ( s )  + X &  Q E LP(KJ 0) ( 7 )  

where  the set K is defined as above. 

Proof:  Let  C  be  the  cone  generated by K. C is convex because K is 

convex. We proceed as in  Theorem 4.2. 

Case 1. Suppose Q(C) # Rm.  Then there  is a  in Rms such  that 



(X, Q(c))  < - 0 for all c in C. 

( 1. o Q, c)  < - 0 for all c in  C. 

.*. - X Q is in  LP(KJ 0) and (7) is satisfied with = 0, & # 0. 

Case 2a. Suppose Q(C) = Rm. We know LP(C) = LP(K). If Rmo Q 

/1 LP(C) # [O], then  there is a x E RmJ X 0 such  that  again ( 7 )  

holds  with /$ = 0, x # 0. 

Case 2b. Suppose  Q(C) = Rm,  R 0 Q f ? L P ( C )  = [O]. Since  Q(C) = Rm, m 

it  can  be  easily shown that (q, A $0)  ) satisfies K. T. at x. Here A 

is the  set of all x in B such  that q(x) = 0. Then, LC(A , x)  = N where 

N is the  null  space of Q z q'<x>, and LP(A ,x) = RA Q. We shall now 

prove 

q' q 

9 -  

9 

L C ( A q 0 A ,  x) 2 C f l N .  
- 

( 8 )  

Since Q(C) = Rm is finite-dimensionalJ  it is easy  to show that 

C n N  = C f )  N. Using  this  fact and that C is generated  by K to show (8) 

it  suffices  to  prove (9). 

- 

LC(A A A ,  x,) 2 K n N  
9 (9)  

Let A x E Ki?N, i. e . ,  P X  E K and Q ( d x )  = 0. Using  arguments which 

closely  parallel  those of Gamkrelidze [ 131, we can show, using  condition 

3 in  the  definition of quasi-convexity,  that  for  sufficiently  small E ,  there 

is a  vector  xE  in A such  that 1 xE - EAX I < - O ( E  ) and  such  that 

It  follows  then  that d x E LC(A  OAq, x). 



= L P ( L C ( A ~  A, x,) ) 

- c P ( N 0  K) by (8) and (9) 

Moreover, we know that  P(N)/)  P(K) = ( 0 1  and P(N) = R; Q is a finite- 

dimensional  subspace.  Hence,  (P(N) + P(K)) is closed. 

... h'(x) E P(N) + P(K) 

= R; Q + P(K) 

Therefore,  there is a & in Rm such  that 

h'(x> + Q E P(K) 

and (7) is satisfied with ,&= 1. 
Q. E. D. 
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